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Abstract: In this research, we study deteriorating inventory replenishment policy with quadratic trend in demand 

and shortages over a fixed planning period and we obtain the analytic solution by minimizing the total inventory. 
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1.    INTRODUCTION 

Inventory is define as the stock of goods or other economic resources that are kept, stored, accumulated or reserved in 

order to guarantee even and efficient running of business activities. The cause of deterioration cannot be neglected in 

inventory management model. 

Deterioration is defined as spoilage, damage, decay, or change that prevents the material from being used for its initial 

purpose. Example of items in which deterioration can occurs are drugs, radioactive substance, food items, 

pharmaceuticals, photographic firm, electronic component and fashionable cloths.      

The first economic order quantity was developed by Harris (1915).And is extended by Wilson (1934) which give the 

general formula to obtain economic order quantity. Ghare and Schrader (1963) designed an inventory for an exponentially 

decay inventory. Convert and Philip (1973) enrich Ghare and Schrader’s model for two parameter Weilbull distribution 

deterioration. Goyal (1985) create an economic order quantity permissible delay in payment by neglecting the difference 

between the selling price and purchase cost and finalized that the economic the economic replenishment interval and order 

quantity generally increases marginally under permissible delay in payment .Dave (1985) make a correction in Goyal’s 

model by assuming that the selling price is necessarily higher than its purchase price. Aggarwal and Jaggi (1995) expand 

Goyal’s model by considering deteriorating items. Jamal etal (1997) also improve Goyal’s model by allowing shortages 

and deterioration. Chang and Dye (2001) enlarge Jamal et al to allow time varying deterioration rate and backlogging rate 

to be inversely proportional to the waiting time. Teng (2002) established economic order quantity model with zero 

deteriorating rate. Chang et al (2003) expanded Teng’s model by considering a permissible delay to the purchase if the 

other quantity is greater than or equal to a predetermined quantity. More recently, Roy (2008) established economic order 

quantity with time proportion deteriorating rating rate, Demand rate as function of selling price and time dependent 

holding cost. Moshra et al (2013) improve Roy’s model by designing an inventory model for deteriorating items with 

demand rate and holding cost as increasing linear function of time with shortages (2014) enrich Mishra et al model by 

considering linear time dependent demand and develop an inventory deteriorating items where deteriorating rate and 

holding cost are constant with shortage and partial backlogged. In this work Fortity Milu and Shrutirekha’s model by 

considering quadratic time dependent demand rate.  

This work has been arranged into various important sections which includes; 
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 Introduction  

 Assumption and notations 

 Mathematical formulation and  

 Conclusion. 

2.     NOTATIONS AND ASSUMPTIONS 

We need the following notations for developing mathematical model; 

1. The demand rate is time dependent and quadratic ; 

  2

1 2 3D t a a t a t    

Where   1 2 3, , 0a a a   constants 

2. The replenishment is instantaneous  

3.  I t  is the level of inventory at time t , 0 t T   

4.  T is the length of the cycle 

5.   is the constant deteriorating rate,       

6. 1t  is the time when the inventory level reaches zero  

7.    is the ordering quantity per circle. 

8. 0A  is the fixed ordering per order. 

9. dC  is the cost of each deterioration. 

10. hC  is the inventory holding cost per unit time. 

11. sC  is the shortage cost per unit of time. 

12.  M is the maximum inventory level for the ordering cycle such that  0M I . 

13.  1TA t  is the average total cost per unit time under condition 1t T . 

14. 1t  is the optimal point. 

3.    MATHEMATICAL FORMULATION 

Here we consider the deteriorating inventory model with quadratic time dependent demand rate. Replenishment occurs at 

t = 0, when the inventory level attain it maximum from t = 0 to   , the inventory level reduces due to demand and 

deterioration. At    the inventory level achieves zero, then shortage is allowed to occur during the time interval (    ) is 

completely back logged. The total number of back logged items is replaced by the next replenishment .According to the 

notations and assumptions mentioned above, the behavior of inventory system at any time can be described by the 

following differential equations. 

                      
 

   1

1 ,
dI t

D t I t
dt

      
10 t t          1      
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 

 2
,

dI t
D t

dt
                

1t t T         2  

Equation  1 is a linear first order equation, hence 

                           2

1 1 2 3

t tI t e a a t a t e 


     

On integration, the above equation gives  

                                2

1 1 2 3 2 3 3 12 3
2 2

t t t
t e e e

I t e a a t a t a a t a C
  



  

 
        

 
 

Where 
1C is an integral constant using the given boundary conditions, solution of the above differential equation is given 

by   

                           1

2 2

1 2 1 3 1 2 3 1 3 1 2 3 2 3 3
1 2 3 2 3

2 2 2 2t ta a t a t a a t a a a t a t a a t a
I t e



     

      
      
 

 

          Since    1 0 ,I M  we get  

                   1 1

2

3 3 1 3 11 2 2 1
1 2 3 2

2 2
0 1

t ta a t a ta a a t
M I e e 

     

  
         

   
 

Solving equation  2 and its solution is given by  

                              2 2 3 332
2 1 1 1 1

2 3

aa
I t a t T t T t T       

In the circle time the number of deteriorating units (NDU) is given by  

                            NDU  =  
1

0

t

M D t dt    

      
1

2

1 2 3

0

t

M a a t a t dt                                     

 1 1

2 32

3 3 1 3 1 31 2 2 1 2
12 3 2

2 2
1

2 3

t ta a t a t a ta a a t a t
e e a t 

     

    
             
     

 

 The total number of inventory carried during the interval   10, t  , is given by 

                        
1

1

0

t

CI I t dt   

 
1

1

2 2

1 2 1 3 1 2 3 1 3 1 2 3 2 3 3

2 3 2 3

0

2 2 2 2
t

t ta a t a t a a t a a a t a t a a t a
e


     

      
      

 
  

 1

2 2 2
2 31 2 1 3 1 2 3 1 3 1 2 3 2 3 3

1 1 12 3 3 3

2 2 2 4
1

2 3

ta a t a t a a t a a a a a a a
e t t t  

     

      
       
 

 

The total shortage during the interval  1,t T , say sT , is  
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                          
1

2

T

s

t

T I t dt    

                                   
1

2 2 3 332
1 1 1 1

2 3

T

t

aa
a t T t T t T dt
 

       
 
                

     2 2 3 3 2 4 4 431 2
1 1 1 1 1 12 2 3 3 4

2 6 12

aa a
T t t T T t t T T t t T               ... 8  

Then, the average total cost per unit time under the condition 1t T  can be given by  

              1 0

1
.T d h c s sA t A C NDU C I C T

T
                                   ... 9      

The first order derivative of  1TA t  with respect to 1t  is as follows: 

               
 

     11 2

1 1 2 1 3 1

1

1
1

T tn
d s

dA t C
C e C t T a a t a t

dt T





  
        

  
              ... 10  

The necessary condition for  1TA t  in   9  to be minimized is  

                
 1

1

0,
TdA t

dt
 That is  

                    1 2

1 1 2 1 3 11 0th
d s

C
C e C t T a a t a t



  
        

  
                              ... 11    

      Let       1

1 11th
d s

C
f t C e C t T



  
      

  
 

  Since     0 0sf C T          ,    1 0Th
d

C
f T C e



 
    
 

 

          For   1Te   

          And      1

1 0,t

d h sf t C C e C      It implies that  1f t  is strictly monotonic Increasing function and 

equation  11  has a unique solution at 1t , for  1 0,t T . 

Therefore, the deteriorating inventory model under the condition  10 ,t T   1TA t  obtain its maximum at 1 1,t t  

where  1 0f t   if  1 .t T  

4.    CONCLUSION 

In this work, we study inventory model for deteriorating items with quadratic time dependent demand rate. We proposed 

an inventory replenishment policy for this type of inventory model. The proposed model can further be enriched by taking 

more realistic assumptions such as probabilistic demand rate.   
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